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Simulation of stabilizing process of dielectric nanoparticle in
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In 1970, Ashkin demonstrated the optical trapping of
particles using the radiation force produced by focused
continuous-wave (CW) Gaussian beam[1]. Since then, the
optical traps and tweezers have been the powerful tools
for manipulating dielectric particles[2,3]. Usually, opti-
cal traps or tweezers in many experiments are conducted
by using CW laser. It is well known that the CW laser
with the power of a few milliwatts can only produce the
radiation force with an order of a few piconewtons to ma-
nipulate the micro-sized particles. Recently, Ambardekar
et al. used a pulsed laser to generate the large gradient
force, up to 2500 pans within a short duration of sev-
eral picoseconds[4−7]. Up to now, we have paid attention
to optical traps using pulsed Gaussian beam (PGB)[7]

and counter-propagating pulsed PGBs[8]. In Refs. [8–
11], the discussions about stability of the optical traps
and tweezers as well as the effective control of dielec-
tric particles like gold nanoparticles and live membrane,
have been conducted taking into account of the Brown-

ian force. But the stabilizing process during the pulsing
of the optical beam and the absolutely stable conditions
of dielectric particles are not clear. Therefore, it is de-
sired to advance the studies of the above questions for
the pulsing optical trap.

In this letter, we introduce the gradient optical force
acting on dielectric nanoparticles in the optical trap using
two counter-propagating PGBs and the set of Langevin
equations concerning thermal fluctuations of the probe.
A simulation method is presented and used to present the
radial variances of glass nanoparticles in water, which are
trapped by picosecond PGB.

A PGB optical trap is considered to trap fluctuating di-
electric nanoparticles in a water plate (Fig. 1). The gra-
dient optical force is induced by two counter-propagating
PGBs acting on a Rayleigh dielectric particle. The po-
larization direction of the electric field is assumed to be
along the x axis.

The expression for the electric field of the above PGB
is defined by[6]
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and for the below PGB,
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where W0 is the beam waist at the plane z = 0, ρ is the
radial coordinate, x is the unit vector of the polarization
along the x direction, k = 2π/λ is the wave number, ω0 is
the carrier frequency, and τ is the pulse duration. For the

fixed input energy U of a single pulsed beam, the constant
E0 is determined by E2

0 = 4
√

2U/
[
n2ε0cW

2
0 (π)3/2

τ
]
,

where n2 is the refractive index of the surrounding
medium (water). The corresponding magnetic field under
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Fig. 1. (a) Schematic of optical trap; (b) motion with radial
variance of glass particle in the water plate.

paraxial approximation can be given by

H (ρ, z, t) ∼= yn2ε0cE (ρ, z, t) , (2)

where c = 1/ (ε0µ0)
1/2 is the light speed in vacuum, and

ε0 and µ0 are the dielectric constant and permeability in
vacuum, respectively.

From the definition of the Pointing vector, we can read-
ily obtain the intensity distributions for the above and
the below PGBs as follows:
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where P = 2
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, z̃ = z/kW 2

0 , ρ̃ =

ρ/W0, and t̃ = t/τ .
For simplicity, we assume that the radius a of the parti-

cle is much smaller than the wavelength of the laser (i.e.,
a¿ λ). In this case, we can treat the dielectric particle as
a point dipole. We also assume that the refractive index
of the glass particle is n1 and n1 À n2.

By argument similar to that shown in Ref. [6] for one
PGB, the gradient optical force acting on dielectric par-
ticle of two counter-propagating PGBs is given by

F grad,ρ (ρ, z, t) =
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2 .

Assuming a low Reynold′s number regime[12], the
Brownian motion of the dielectric in the optical force
field (in the optical trap) is described by a Langevin
equation as

γρ (t)+F grad,ρρ (t) =
√

2Dγh (t) , (5)

where ρ (t) = [x (t) , y (t)] is the dielectric particle’s
position in the water plate, γ = 6πaη is its friction
coefficient, η is the medium viscosity,

√
2Dγh (t) =

√
2Dγ [hx (t) , hy (t)] is a vector of independent white

Gaussian random processes describing the Brownian
forces, D = kBT/γ is the diffusion coefficient, T is the
absolute temperature, and kB is the Boltzmann constant.

We compute the two-dimensional (2D) motion and
the radial variance (position) of a glass particle in wa-
ter using the Brownian dynamic simulation method. A
particle/bead-spring model is employed to represent the
glass particle, and the following motion equation is com-
puted for each particle:

ρ (t + δt)− ρ (t) = −F grad,ρ [ρ (t)]
γ

× ρ (t)× δt

+
√

2D × δt× h (t) , (6)

where δt is the time increment of the simulation, h (t) is
a random vector whose components are chosen from the
range [–1, 1] in each time step. Fgrad,ρ [ρ (t)] in Eq. (6)
describes the gradient optical force acting on the particle
located at position ρ at time t. For example, at the
beginning time t = 0, the glass particle is assumed to be
located at the position |ρ (t = 0)| = W0, then we under-
stand that the gradient optical force F grad,ρ (W0, z, 0)
acts on the particle, which will be located at position
W + ∆ρ after a time increment δt.

We are only interested in the radial variance of glass
particle in the pulsing time (this parameter describes
the stability of particle), so the simulation will be com-
puted from the beginning moment t = –3τ (or t = 0)
to the ending moment t = 3τ (or t = 6τ) of the optical
pulse. In the following numerical simulation, we choose
the parameters as follows: λ = 1.064 µm, m = n1/n2 =
1.592/1.332, η = 7.797 × 10−1 Pa · s (the small glass
particle and water, for instance)[6], W0 = 1 µm (or W0 =
2 µm), a = 10 nm (or a = 1 nm), τ = 1 ps, and the in-
put power U is changed from 0.1 to 1 µJ[7], T = 25 ◦C.
The gradient optical force Fgrad,ρ is calculated by Eq.
(4) with t ranging from –3τ to 3τ , and ρ ranging from
–2W0 to 2W0 at z = 0 µm (considering the beam waist
of pulsed Gaussian beam located in the traping plane
z = 0).

The simulations show that the gradient optical forces

Fig. 2. Distribution of optical force (a) in phase plane (ρ, t),
(b) in direction ρ, and (c) in pulsing time.
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Fig. 3. Radial variance of glass particle during time for U =
0.1 µJ, a = 1 nm, with beginning positions (a) ρ0 = 1 µm,
(b) ρ0 = 2 µm.

Fig. 4. Radial variance of glass particle during time for
U = 1 µJ, a = 1 nm, with beginning positions (a) ρ0 = 1
µm, (b) ρ0 = 2 µm.

Fig. 5. Radial variance of glass particle during time for U =
0.1 µJ, a = 10 nm, with beginning positions (a) ρ0 = 1 µm,
(b) ρ0 = 2 µm.

Fig. 6. Radial variance of glass particle during time for a
= 10 nm, ρ0 = 2 µm with some values of U:(a) 0.1 µJ, (b)
0.12 µJ, (c) 0.13 µJ, (d) 0.14 µJ, (e) 0.15 µJ, and (f) 0.19 µJ.

acting on the glass particle in water are divided into
two parts whose directions are opposite to each other
(Fig. 2(a)) and magnitudes are distributed as Gaussian
functions of radial distance (Fig. 2(b)) and pulsing time
(Fig. 2(c)). This distribution of gradient optical force is
in good agreement with that presented in Ref. [6].

The radial variances of the glass particle with radius
of 1 nm as a function of pulsing time (a function of pulse
power or optical force, which is illustrated in Fig. 2(c)

at two initial positions are shown in Fig. 3. With the
increase of the gradient optical force from zero to peak
(depending on time), the glass particle is pulled into the
center of the trap, where ρ = 0, and fluctuates in the sta-
ble region defined as a circle with radius ρst = 100 nm.
This fluctuation is in good agreement with experimental
and theoretical results for phagocytic membrane[9] and
gold nanoparticles[10], respectively.

When the optical force decreases at the end of the
pulse, the thermal fluctuation of glass particle is stronger
till it comes out of the stable region. If the beginning
position ρ0 = 2W0 = 2 µm (the position is more far away
from the trap center), the pulling rate is slower.

For the case that the power of PBG is higher (U=1 µJ
for example in Fig. 4), the stable region is reduced, i.e.,
the glass particle fluctuates in a more narrow region.
Moreover, the pulling rate is more speedy.

For a bigger particle (a = 10 nm for example in Fig. 5),
the fluctuation amplitude decreases and the pulling rate
decreases significantly. Especially, when the beginning
position ρ0 = 2W0 = 2 µm, the glass particle will not
be pulled into the stable region. But this situation can
be overcome by increasing the pulse power. As shown
in Fig. 6, we can see that a glass particle with its ra-
dius a = 10 nm will be pulled into stable region when
U ≥ 0.15 µJ (Figs. 6(e) and (f)).

In conclusion, we find that the Brownian force has
influences on the stabilizing process of glass particles in
water by the optical trap using PGBs. The influence of
Brownian force decreases when the dimension of particle
increases. The stability of glass particle in trap depends
on the beginning position, the pulse power, and the di-
mension of particle. It is possible to choose a collection
of parameters so that the radius of stable region could
be reduced to the dimension of particle, i.e., the particle
is stable absolutely.
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